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I. Introduction

In a series of recent pa,perlsl'5 we have discussed the equation of
state, cohesive energy density (c.e.d.) and the internal pressure (pi)
of oligomer liquids and amorphous polymers of widely differing structures
at atmospheric and elevated pressures. The discussion was based on two
alternative approaches, namely statistical mechanics, specifically a
t partition function based on cell theory and thermodynamics, i.e. a
{ principle of corresponding states (PCS). The validity of the latter

over the whole range of volumes and pressures experimentally available

could be esteblished. The cell theory is consistent, of course, with

E)

the PCS, but yields correct thermal expansivities and c.e.d.'s for re-
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duced volumes % between about 1 and 1.2 only, deviating systematically

" ,
for V > 1.2, The internal pressure-volume function shows a maximm in

the range in which the reduced experimental function is monotonic.
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'( This discrepancy clearly reflects the defect of the theory in respect to
entropy.

Most recently5 we have explored the effect of lattice vacancies or
holes in the quasilattice, Previous efforts in this direction6 had
been restricted to fluids with spherical force fields. The new features
introduced in the partition function by the presence of holes are a) a
volume dependent combinatory factor,b) a lattice energy which depends
on the fraction y of occupied sites,and c) a cell partition function
which varies with y. The purpose of the present paper is to discuss
particular forms of this latter dependence and to compare the resulting

equation of state and other quantities with experiment. In this we shall

limit ourselves to essentially atmospheric pressure data.

II. Recapitulation of Cell Theory Results

Assuming & square well cell potential and a 6-12 potential between
segment pairs, we have for the configurational partition function:

Z = (V1/3 - 2_1/6\!*1/3)3CNexp{-que*/(2kT)[l.Oll(v*/v)h -

2,400 (v*/v)?1} (1)

Here v is the volume per chain segment, v* the corresponding characteristic
volume defined in terms of the pair potential and the lattice geometry,e¥*
the potential minimum, qz = s(z - 2) + 2 the number of nearest neigh-
bors of an s-mer, and the numerical comstauits are thosc corresponding
to a face centered cubic lattice. The parameter 3¢ is the number of

external degrees of freedom, with lim c¢/s = const. From (1) one obtains
S

6) See, for example, H. Eyring, D. Henderson, B. J. Stover and E. M.

Eyring, "Statistical Mechanics and Dynamics", John Wiley and Sons,
New York, 1964, p. 376.
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f . }!’ a principle of corresponding states in terms of the following reduced
variables:
Y = vive = v/veg T = /7% = ckT/(qze*);
‘ A (2)
i p= P/p* = pV*/(qZE*)
| and the results:
WA = (1 - 2 V&3 oW (101 ¥2- 1.2005) (3)
c.b.d. = 1/(2¥3)(2.409 - 1.011 ¥°2) (%)
B, = (2/F) (12085 - 1.014?) (5)
These expressions have been compared earlier with the experimental
expressions
"master" curves which verify the validity of PCS and analytical/for the

1-5

latter have been obtained.” ° All comparisons between theory and exper-

iment are then based on these master curves.

III. Hole Theory
For the volume dependent part of Z we now write in place of eq. (1):

Z = goQexp(~Eo/kT) (12)

3¢

with Q=f and f the cell partition per degree of freedom of the chain.

For the computation of the combinatorial factor g we select a lattice
consisting of Ls sites on which are placed the Ns segments of the N

chains with N < L, and assume equal sizes of segments and holes. This

yields:5

RAVIE RN ) (6)

with N = (L - N)s the number of unoccupied lattice sites. The reduced

(N5 + N

g= NS ih

lattice energy per molecule now becomes:
¥,

where ¥y

(y/2)[1.011(v¥/w)® - 2.509(v*/4)?] (1)

N/L and w = yv represents the volume of a cell or the volume



T
.¢4l" per site. It should be noted at this point that the fraction of occupied
sites y is a function of both T and V (see below) and hence E, and Q are
no longer functions of volume sclely as in the absence of lattice vacancies,
eq. (1).
From eqs. (1a), (6), and (7) we obtain for the configurational
Helmholtz free energy:5
F/N = kT[1n(y/s) + s(1 - y) (1 - y)/y]
~3ckT 1nr+ (qze*y/2)[1.001(y%)™" - 2.409(y¥) 2] (8)
The cell size or fraction y at equilibrium minimizes the free energy or
(BF/By)V’T =0
yielding the condition for y:

(s/3¢)[{(s - 1)/s + 1n(1 - y)/y] = -Y(alnf/ay)V’T

+[y/ (61 1/ [2.k09 - 3.033/(3 1] )
Recalling in view of the extremum condition that
p = -(3F/aV), = (BF/ay)T,my/V
we obtain’
PV/T = 3y[(a1n/ay)y o - (o1nt/ay), ] 30)

+(2y/) /(2110017 (5N - 1.20u5]
Eq. (3a) together with the solution of eq. (9) for y determines the equa-
tion of state. As we have remarked earlier,seq. (9) is strictly compatible
with the principie of corresponding states only provided th
assumes a universal value., Our earlier results certainly show wide var-
iations of this ratio with the nature of the substituents and the chain

1,2

backbone. Yet, it will turn out that the results are within wide

limits practically independent of the specific value assigned to the
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quantity c¢/s. There is moreover, an apparent dependence on molecular
weight through the factor (s - 1)/s which varies between zero and unity.
However, & similar insensitivity of the results may be anticipated.

In order to proceed further, we must specify the dependence of f
on y and the variables of state. In earlier free volume theories for
spherical molecules a linear dependence of the logarithm of the free
volume on the number of holes was assumed.6 Recently Henderson7 achieved
a noteble improvement by postulating a linear relation involving the free
volume itself. In his theory the free volume is averaged over a "gas"
and a "solid"-like free volume with weight factors (1 - y) and y re-
spectively. In our notation and generslized for our systems, this implies
the relationship:

£ = [y(t/3 - 2761133 4 (1 L y)u)/3 (108)
Alternatively, we may average the cell partition function per degree of

freedom, thus:

£ = y(w1/3 _ 2-1/6v,1/3) + (l-y)ml/3 Vi 2‘1/6v*1/3y (10b)
Preliminary calculations of the various thermodynamic quantities indicate
qualitatively similar results based on egqs. (10a) and (10b) respectively.
However, the linear relation (10b) appears to yield a superior quanti-
tative agreement with experiment. Hence, we shall now explore the con-
sequences of eq. (10b) in detail.

Substitution of eq. (10b) into (9) and (3a) yields the determining

equation for y, viz.:

(s/(3¢)[(s=1)/s + 1n(1-y)/y] = (2/3-X)/X

n " (9a)
+[y/6¥1/(3¥)2[2.500 - 3.033/(y¥)2)

7) J. Henderson, J. Chem. Phys., 37, 631 (1962).



end the equation of state:

A = 13+ (2y/A) /(3N [1.001/ ()2 - 1.2045]

6

with X = 1 - 2~H/6;,;4)2/3

-6~

(3b)

For long chains and at astmospheric (zero) pressure, eq. (9a) reduces to:

(s/3e)[1 + In(1 - y)/y) = (2/3 = X)/X

+1/(12X)+[2.409 - 3.0337(y¥)21/[1.2045-1.011/(3%)2]

(9v)

Table I shows y as a function of V at atmospheric pressure and as-

suming s/(3c) = 1, the value appropriate for an s-mer with freely ro-

tating segments and no side group motions.

We note the initial slow

decrease of y with increasing % and the subsequent relative constancy of

the reduced cell size 3

Equilibrium Fraction y of Occupied Sites, eq. (9b) as a Function of

yv with increasing volume.

Teble I

Reduced Volume at Atmospheric Pressure

v

0.9415
0.9L480
0.95
0.96
1.00
1.05
1.10
1.15
1.20
1.25
1.30
1.35
1.ho
1.k45
1.50

y

0.9999
0.9983
0.9972
0.9897
0.9536
0.9101
0.8703
0.8339
0.8006
0.7699
0.T416
0.7155
0.6912
0.6687
0.64T76

yv

0,941k
0.9k46k
0.9473
0.9501
0.9536
0.9556
0.9573
0.9590
0.960T7
0.9624
0.9641
0.9659
0.967T
0.9696
0.971k
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We can now construct the zero pressure isobar by substituting the
appropriate values from Table I into eq. (3b) with the left hand side
equal to zero. Fig. 1 exhibits a comparison between the V - % curve so
calculated, the earlier result of the cell theory, eq. (3), and the
experimental master curve.2 Since eqs. (3) and (3b) define two different
systems of coordinates, it is necessary +to shift, for example, the cell
model and the experimental curve along both axes. The connection between
the former and the hole theory is made by the equations:

log [V(cell)/%(hole)] = 0.023; log [%(cell)/%(hole)] = 0.395 (11)

It appears from the results of Fig. 1 that the theory,with the
assumed value of s/c describes very satisfactorily the observed reduced
volume-temperature relation at atmospheric pressure, except perhaps for

the very last portion, ¥ > 1,45 = 1.38 x 1.054% in contrast to the

cell
result of the simple cell theory. We have convinced ourselves that a
value of s/(3c) = 0.3, leads to practically the same curve with, of course,
a different system of reduced variables. It should be noted in this
connection that the values of s/(3c) derived in terms of the cell theory
coordinatesl’2 vary between sbout 0.6 for polymethylene and 0.06 for poly=-
styrene.*

From eq. (8),the relation U = --Te[a(F/T)/aT]v
and eq. (9) we derive:

c.6.d. = (y/29)/(y¥H)3[2.%09 ~ 1.011/(y1)?] (4a)
Fig. 2 presents a comparison with the cell theory and the experimental

(pcs) result.z’5 In order to obtain the transformation factor for the

reducing pressure p*, eq. (2), we make use of the fact, that the cal-

# It must be recalled that for the actual n-mer s < n, because of the
assumption of a uniform quasilattice.
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culated values of the c.e.d. must become identical in both theories as
¥y + 1. By graphical extrapolation we observe that lim(yV) = 0.94 and
deduce from eqs. (4), (11) and (ka)

p*(hole)/p*(cell) = 0.9306 (11a)
vhen s/(3¢c) = 1,
It must be admitted that in the region in which the two theories begin
to depart from each other, the cell theory gives somewhat smaller deviations
from experiment. Once more, a change in the numerical value of s/c is in=-
consequential for the shape of the theoretical curve.

Finally, we obtain the internal pressure from the definition

p; = (aU/av)T = (au/av),l,’y + (QU/ay)T’v(ay/BV)T

with the result:

p; = (1/2)/(y1?[2.409 - 3.033/(y)21 (ay/a¥)gy 5
+{2y/ M) /(y¥)2[1.2045 - 1.011/(y1)2)
The derivative follows from the minimization condition. Writing eq. (9b)
in the form ¢(y,V,¥) = 0, we have

(ay/2¥)y = -(20/3V) 3/ (30/3y)5y 3
and finally

(ay /37 )= (y /) {201-%) (36%)-(y/28) 1 (y¥) P12, 132/ (). 818] }x a2
{4(2-%)/ (3%° )+ (y/2¥) /(y¥)?[9.099/ (y¥)2=2.409 ]+ (s /ey ) 1n(1-y J+s/[c(1-y) 1} T

Fig. 3 shows eqs. (5) and (5a) with s/(3¢c) = 1, compared with the
experimental (PCS) result. Although numerical agreement is still lacking,
an improvement over the cell theory is noticeable. The new curve is

monotonic over the range of volumes encountered experimentally. Also it

is convex to the V-axis. A change in the value of s/(3c) to 0.3 raises




the low temperature part of the curve somewhat, but does not suffice to

improve the agreement significantly.

IV, Conclusions

The extra entropy resulting from the introduction of lattice
vacancies, together with the relation (10b) for the cell partition
function, leads to a significant improvement in the reduced volume-
temperature function at atmospheric pressure. No improvement is ob-
served in respect to the c.e.d. As for the internal pressure function,
the numerical agreement is still not sufficient. In the present theory,
the lattice picture has been used additionally to evaluate the com-
binatorial factor g, eq. {(6), in the partition function (la). Moreover,
equal sizes of holes and chain segments are assumed. The use of this
equation may contribute to the relative inadequacy of the derivative
(aslav)T, in contrast to the behavior of the function (as/ap)T =
-(aV/BT)p. Finally, we observe that in the expression for the con-
figurational heat capacity

< = (a?‘:/a&‘)f‘y,y + (a?f/ay)%ﬁ(ay/a&‘);,
the first term vanishes in the square well approximation for the cell potential,
as in the urmodified theory, but the second meskes a positive contribution,

as it should,
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LEGENDS FOR FIGURES
Fig. 1. Comparison between experimental (the points) and theoretical
reduced isobars at atmospheric pressure. Full line, hole theory, egs.
(3b) and (9b); dashed line, cell theory, eq. (3).
Fig. 2. Comparison between experimental (the points) and theoretical
reduced cohesive energy densities at atmospheric pressure. Full line,
hole theory, eqs. (4a) and (9b); dashed line, cell theory, eq. (k).
Fig. 3. Comparison between experimental (the points) and theoretical
reduced internal pressures computed at atmospheric pressure. Full line,

hole theory, egs. (5a) and (9b); dashed line, cell theory, eq. (5).
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